
Biomarkers of Epileptogenesis

Charles Akos Szabo, MD Professor and Chief of Epilepsy Department of Neurology UT Health San Antonio

Disclosures: Speaker for UCB, Lundbeck Research support from LivaNova

Disclosures

None

Overview

- Raymond Dingledine:
 - Experimental Models of Epileptogenesis
- Melanie Carless:
 - Epigenetic Markers of Epileptogenesis
- Cian McCafferty:
 - Neuroimaging in Generalized Seizure Models: Implications for Epileptogenesis and
- Professor of Pharmacology, Emory University (former Chair for 25 yrs)
- Ph.D. at Stanford University
- Assoc Scientist, Texas Biomed
- Ph.D. in Molecular Genetics at **Griffith University**
- Postdoctoral work at Moffitt Cancer Center in Tampa
- Postdoct Assoc, Yale University
- Ph.D. in Electrophysiology at

Epileptogenesis

- · Definition
 - The gradual process leading a "normal" brain to develop epilepsy
 - Typically acquired
 - Epilepsy emerges after a latency period following a "first" hit
 - Latency period
 - Identify risk factors or biomarkers for epilepsy
 - Intervention
 - "Antiepileptogenic therapies"
- Clinical scenarios
 - Complex febrile seizures and status epilepticus
 - Posttraumatic, –stroke or infectious epilepsy

 - Perilesional or remotely connected structures
- Challenges

 Low incidence of developing
- Location
- Duration of latency period
- Mitigating factors
- Medications

Epileptogenesis

- · Experimental models
 - Chemoconvulsant-induced status epilepticus
 - Single, repetitive or prolonged seizures induced by kindling, hypoxia, hyperthermia or chemoconvulsants
 - Seizures induced by trauma or genetic alterations
- · Epigenetic effects
 - DNA-methylation or microRNA
- Generalized epilepsy
 - Early pharmacologic interventions modify disease
 - Structural/functional brain developmental changes

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.